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Background

 Graph(network) clustering has attracted 
increasing research interest.

 For homogeneous network:Spectral 
clustering,symmetric Non-negative Matrix 
Factorization,Markov 
clustering,Ncut,Mcut,...

 However,heterogeneous information 
network clustering are concentrated 
until recently.
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Background
 Heterogeneous Information network:
 Is an information network composed of multiple 
types of objects.
 Consists of some partial attributes within types of 
objects and links between different types of objects.
 Examples:
 DBLP(author,paper,conference,term)
 Social Network(people,groups,books,blogs,posts,etc)
 Movies(movie,actor,director,)
 Newsgroup(news,writer,group)
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

 Idea:Iteratively clustering and ranking 
which map the target type into a new K-
dimensional feature space according to 
which the clustering is performing.

 Advantage:
 improve the performance of clustering and 
ranking simultaneously.
 avoiding to calculate the pairwise similarity of 
target objects.
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

Some Definitions

 Bi-type Information Network
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

Some Definitions

 Ranking Function
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

Some Definitions

 Conditional Rank and Within-Cluster rank
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

Some Definitions

 Target type:the type we are going to cluster.
 Attribute type:the other types.

 Assumptions: 0XXW
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

Flow:
① Give an initial partition of target object X
② Compute the conditional ranking 
③ Estimate the parameter
④ Form a new feature space
⑤ Calculate the center of each cluster according to 
the new feature space(mean).
⑥ According the new feature space ,assign each 
target object into the nearest cluster
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

 Ranking Score——Ranking function
 Simple Rank

 Authority Rank
 Give ranking scores according some authority rules.
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

      

Wenbao Li



RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

Estimate the assignment parameter
Set 

EM to estimate   KkmikiKm ,...,2,1;,...,2,1,   
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

      Cluster Centers and Distance Measure
K-dimensional vector:
Center of cluster k:

Distance measure:
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RankClus(Yizhou Sun, Jiawei Han , Peixiang Zhao, Zhijun Yin , Hong Cheng, Tianyi 

Wu,EDBT'09)

 Extensions to arbitrary multi typed 
information network

 One-type:set Y = X.
 Bi-type with             :Add type Z,Z = X. map to 2K-
dimensional feature space.
 Multi-typed: N types.   map to NK-dimensional 
feature space.

0XXW
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

 NetClustering(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)
 Idea:Find a new K-dimensional feature space by 
ranking which are determined by a probability 
generative model.
 Advantage:
 suit for multi types objects.
 cluster attribute type object.
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

Definitions

Information Network
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

Definitions

 Star Network Schema
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

Definitions

 Net-Cluster
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

 Flow:
① Give an initial partition of G,which is K clusters.And induce 
net-clusters from the partition.
② Build ranking-based probabilities generative model for 
each net-cluster,i.e.
③ Calculate the posterior probabilities for each target object           
and then adjust their cluster assignment according to the new 
measure defined by the posterior probabilities to each cluster
④ Repeat Step 2 and 3 until the cluster does not change 
significantly,i.e.
⑤ Calculate the posterior probabilities for each attribute 
object               

                       in each net-cluster
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

 Induce net-clusters
①Initial:random
②Other:according to the definition of net-
clusters.
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

Probabilistic Generative Model for target objects
①Given an attribute object x and its type Tx  ,the 
probability to visit x in G is 

②Assumption:
③Generate a paper di in the network:
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

Posterior Probability for target Objects 
and Attribute Objects
①Generative probability of a target object:

②Smoothing handling:

③Posterior probability:
EM
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

Posterior probability for attribute objects
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

E.:Ranking distribution for Attribute Objects
①Simple Ranking

②Authority Ranking
I.   
II.  As the following PROPERTY2
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NetClus(Yizhou Sun,Yintao Yu,Jiawei Han,KDD'09)

III. According to the DBLP rules 
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

 Idea:cluster with incomplete attributes 
across objects and consider different 
types of links which may have variable 
importance.

 Advantage:
 Based strength-aware

 of different links
 Probabilistic clustering

 model

Wenbao Li



GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

Some Definitions

Heterogeneous IN:G = (V,E,W)
Mapping function from object to object:

A is object type set.
Mapping function from link to link type:

R is link type set.
Relation from type A to type B:
Attributes:

AV ：

RE：

ABBA 1 RR
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

Some Definitions

 Example1:DBLP
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

Some Definitions

 Example2:Weather sensor network
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

Some Definitions

 Formation

Wenbao Li



GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

 Clustering Model:
① Two properties:
① attribute generated with high probability
② links beteen objects which have similar clustering 
probability.
② likelihood function of attribute:

two tasks
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

 Task One_Modeling Attribute Generation

 assume the attribute values have two 
type:text,numerical
① Text attribute with categorical distribution

② Numerical attribute with Gaussian distribution
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

 Task One_Modeling Attribute Generation
 Multiple Attributes

assume the independence among these 
attribute,then
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

 Task Two_Modeling Structural Consistency
 The more similar the two objects are in terms of cluster membership,the 
more likely they are connected by a link.

① Consistency function

② Probability of 

partition function(配分函数)
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

 Unified Model(overall goal)
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

 Algorithm Flow:
① Initial:Set initial strength of different types of links 
with equally importance.
② Clustering optimization step:Fix the link type 
weights    to the best value      ,determined in the last 
iteration.Then optimize the objective function with 
regard to     and     ,that is 

EM
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GenClus(Yizhou Sun,Charu C.Aggarwal,Jiawei Han,VLDB'12)

 Algorithm Flow:
③ Link type strength learning step:Fix the 
clustering configuration parameters    

corresponding to the values determined in the 
last step, and use it to determine the best value 

of      ,which is consistent with current 
clustering results.

③ Iteratively repeat step 2 and 3 until convergence 
is achieved.

Newton-Raphson
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PathSelClus
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PathSelClus(Yizhou Sun,Brandon Norick,Jiawei Han,Xifeng Yan,Philip S. Yu,KDD'12)

 Idea:integrating meta-path selection and 
user-guided clustering to improve both the 
performance of clustering and learn the 
weights of different meta-paths.
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PathSelClus(Yizhou Sun,Brandon Norick,Jiawei Han,Xifeng Yan,Philip S. Yu,KDD'12)

 Example
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PathSelClus(Yizhou Sun,Brandon Norick,Jiawei Han,Xifeng Yan,Philip S. Yu,KDD'12)

 Meta-path selection:M-PS problem is then 
to determine which meta-paths or their 
weighted combination to use for a specific 
clustering task.

 User-Guided Clustering:UGU is 
clustering under the condition of limited 
object seeds in each cluster given by users.
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PathSelClus(Yizhou Sun,Brandon Norick,Jiawei Han,Xifeng Yan,Philip S. Yu,KDD'12)

 Input:
 The target type for clustering,type T.
 The number of cluster K.
 The object seeds for each cluster,
 A set of M meta-paths starting from type T,
 Output:
 The weight                  of each meta-path 
 The clustering results
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PathSelClus(Yizhou Sun,Brandon Norick,Jiawei Han,Xifeng Yan,Philip S. Yu,KDD'12)

 Modeling the Relation Generation

 Modeling the Users Guidance 
Dirichlet Distribution

Uniform Distribution
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PathSelClus(Yizhou Sun,Brandon Norick,Jiawei Han,Xifeng Yan,Philip S. Yu,KDD'12)

 Modeling the weights for meta-path 
selection

 by evaluating the consistency between its relation 
matrix      and the user-guided clustering result      .

mW m
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PathSelClus(Yizhou Sun,Brandon Norick,Jiawei Han,Xifeng Yan,Philip S. Yu,KDD'12)

 Unified Model

EM optimization
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CGC(Wei Cheng,Xiang Zhang,Zhishan Guo,Yubao Wu,KDD'13)

 Co-Regularized Multi-Domain Graph 
Clustering

 Idea:Based on NMF,deal with cross-domain with 
many to many weighted relations.
 Use loss function regularization
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CGC(Wei Cheng,Xiang Zhang,Zhishan Guo,Yubao Wu,KDD'13)

 Co-Regularized Multi-Domain Clustering
      
         

 Residual of sum of squares loss function

 B).
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CGC(Wei Cheng,Xiang Zhang,Zhishan Guo,Yubao Wu,KDD'13)

 Co-Regularized Multi-Domain Clustering
 Joint Matrix optimization
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SI-Cluster
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SI-Cluster(Yang Zhou,Ling Liu,KDD'13)

 Idea:define new vertex similarity metric in 
terms of self-influence similarity and co-
influence similarity,and then according the 
similarity calculated from the social graph 
and associated activity graph,combine into 
total social influence and do clustering.
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ComClus(Ran Wang,Chuan Shi,Philip S. Yu,Bin Wu,PAKDD'13)

 deals with the hybrid network with 
heterogeneous and homogeneous network 
simultaneously.

 applies star schema with self loop to 
organize the hybrid network and uses a 
probability model to represent the 
generative probability of objects.
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Our Ideas and Involved Difficulties

 From the point of multi-view(multi-kernel) 
clustering

 do clustering for all types of objects with 
constraints which are determined by the relations 
between different types of objects.

 But how to model the clustering of single type 
object and the constraints?
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Our Ideas and Involved Difficulties

 From point of regularization(such as CGC)
 Do clustering for a target type(such as A,author)

 How to model the clustering of single type object 
and the regularization of its related type.
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Our Ideas and Involved Difficulties

 From the point of meta-path(PathSelClus)
 A-P-A
 A-V-A
 A-T-A
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